actice by Example

Describe how each graph is like the graph of y = |x| and how it is different.

Example 1 (page 325)

Example 2 (page 326)

Graph each function by translating y = |x|.

4.
$$y = |x| + 2$$

5.
$$y = |x| - 4$$

6.
$$y = |x| + 8$$

7.
$$y = |x| + 1$$

8.
$$y = |x| - 6$$

9.
$$y = |x| - 2.5$$

Example 3 (page 326)

Write an equation for each translation of y = |x|.

11. 6 units down

13.
$$\frac{5}{2}$$
 units up

14. 5.90 units up

15. 1 unit down

Example 4 (page 327)

Graph each function by translating y = |x|.

16.
$$y = |x - 3|$$

19. y = |x + 5|

17.
$$y = |x + 3|$$

20.
$$y = |x - 7|$$

18.
$$y = |x - 1|$$

21.
$$y = \frac{|x-1|}{|x+2.5|}$$

Example 5 (page 327)

Write an equation for each translation of y = |x|.

23. right 9 units

25. left
$$\frac{3}{2}$$
 units

26. left 0.5 unit

24. right
$$\frac{5}{2}$$
 units

Problem Solving Hint

For Exercises 28-31, you can check your

work by substituting ordered pairs from the

graph into the corresponding

equation.

At the right is the graph of y = -|x|. Graph each function by translating y = -|x|.

28.
$$y = -|x| + 3$$

29.
$$y = -|x| - 3$$

30.
$$y = -|x + 3|$$

31.
$$y = -|x - 3|$$

Write an equation for each translation of y = -|x|.

34.
$$\frac{3}{2}$$
 units down

36. The graph at the right shows a translation of y = |x| where there is both a vertical and a horizontal change. Which equation below is an equation for this graph?

$$\mathbf{A.}\,y = |x + 2| - 1$$

B.
$$y = |x - 2| + 1$$

C.
$$y = |x - 2| - 1$$

D.
$$y = |x + 2| + 1$$

Graph each translation of y = |x|.

Sample For y = |x + 3| - 2, the 3 indicates the translation of the graph 3 units left. The 2 indicates the translation of the graph 2 units down.

37.
$$y = |x - 1| + 2$$
 38. $y = |x + 2| - 1$

38.
$$y = |x + 2| - 1$$

39.
$$y = |x - 3| - 4$$

39.
$$y = |x - 3| - 4$$
 40. $y = |x + 3| + 4$

- **41. a.** Graph y = |x 2| + 3. (*Hint:* Read the sample above for Exercises 37-40.)
 - **b.** The vertex of an absolute value function is the point at which the function changes direction. What is the vertex of y = |x - 2| + 3?
- c. What relationship do you see between the vertex and the equation? d. Writing Explain how you would graph any equation of the form y = |x - a| + b.

- **42. a.** Graph y = |2x| by making a table of values.
 - **b.** Translate y = |2x| to graph y = |2x| + 3.
 - **c.** Translate y = |2x| to graph y = |2(x 1)|.
 - **d.** Translate y = |2x| to graph y = |2(x 1)| + 3.