Practice and Problem Solving

Practice by Example

Factor each expression.

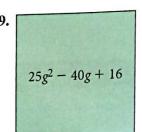
1.
$$c^2 + 10c + 25$$

4.
$$m^2 - 24m + 144$$

2.
$$x^2 - 2x + 1$$

5.
$$k^2 - 16k + 64$$

3.
$$h^2 + 12h + 36$$


 $6. t^2 - 14t + 49$

Example 2 (page 491)

Find the side length of each square.

7.
$$4m^2 + 20m + 25$$

$$49d^2 + 28d + 4$$

Factor each expression. Check your answer.

10.
$$25g^2 - 30g + 9$$

11.
$$64r^2 - 144r + 81$$

12.
$$100v^2 - 220v + 121$$

13.
$$x^2 - 4$$

14.
$$y^2 - 81$$

15.
$$k^2 - 196$$

16.
$$r^2 - 144$$

17.
$$h^2 - 100$$

18.
$$m^2 - 225$$

19.
$$w^2 - 256$$

20.
$$x^2 - 400$$

21.
$$y^2 - 900$$

22.
$$25q^2 - 9$$

23.
$$49y^2 - 4$$

24.
$$9c^2 - 64$$

25.
$$4m^2 - 81$$

26.
$$16k^2 - 49$$

27.
$$144p^2 - 1$$

28.
$$81v^2 - 100$$

29.
$$400n^2 - 121$$

30.
$$25w^2 - 196$$

31.
$$3m^2 - 12$$

32.
$$5k^2 - 245$$

33.
$$3x^2 + 48x + 192$$

34.
$$2t^2 - 36t + 162$$

35.
$$6r^3 - 150r$$

36.
$$7h^2 - 56h + 112$$

Apply Your Skills

- . 37. Writing Summarize the procedure for factoring a perfect-square trinomial. Give at least two examples.
- 38. Error Analysis Suppose a classmate factored the binomial at the right. What error did your classmate make?

$$4x^2 - 121 = (4x - 11)(4x - 11)$$

= $(4x - 11)^2$

Mental Math Find a pair of factors for each number by using the difference of two squares.

Sample
$$143 = 144 - 1$$

Write 143 as the difference of two squares. Rewrite 144 as 12² and 1 as 1².

$$= 12^2 - 1^2$$
 Rewrit
= $(12 - 1)(12 + 1)$ Factor.

$$=(11)(13)$$

Simplify.

40. 91

41.75

42. 117

43. 224

- **44. a. Open-Ended** Write an expression that is a perfect-square trinomial.
 - b. Explain how you know your trinomial is a perfect-square trinomial.

HILL ST

Factor each expression.

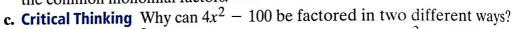
45.
$$100v^2 - 25w^2$$

46.
$$16p^2 - 48pq + 36q^2$$

47.
$$28c^2 + 140cd + 175d^2$$

48.
$$\frac{1}{4}m^2 - \frac{1}{9}$$

49.
$$x^2 + x + \frac{1}{4}$$


50.
$$64g^2 - 192gh + 144h^2$$

51.
$$\frac{1}{4}p^2 - 2p + 4$$

52.
$$\frac{1}{9}n^2 - \frac{1}{25}$$

53.
$$\frac{1}{25}k^2 + \frac{6}{5}k + 9$$

- 54. a. Geometry Write an expression in terms of n and m for the area of the top of the solid region being drilled at the right. Use 3.14 for π . Factor your expression.
 - b. Find the area of the solid region if n = 10 in. and m = 3 in.
 - **55. a.** Factor $4x^2 100$ by removing the common monomial factor and then factoring the remaining expression as the difference of squares.
 - **b.** Factor $4x^2 100$ as the difference of squares, and then remove the common monomial factors.

d. Can you factor $3x^2 - 75$ in the two ways you factored $4x^2 - 100$ in parts (a) and (b)? Explain your answer.

Factor each expression.

56.
$$64r^6 - 144r^3 + 81$$

57.
$$p^6 + 40p^3q + 400q^2$$

58.
$$36m^4 + 84m^2 + 49$$

59.
$$81p^{10} + 198p^5 + 121$$
 60. $108m^6 - 147$

60.
$$108m^6 - 147$$

61.
$$x^{20} - 4x^{10}y^5 + 4y^{10}$$

62.
$$256g^4 - 100h^6$$

63.
$$45x^4 - 60x^2y + 20y^2$$
 64. $37g^8 - 37h^8$

64.
$$37g^8 - 37h^8$$

- **65. a.** The expression $(t-3)^2 16$ is a difference of two squares. Identify a and b. **b.** Factor $(t-3)^2 - 16$ and simplify.
- **66.** The binomial $16 81n^4$ can be factored twice as the difference of squares. **a.** Factor $16 - 81n^4$ completely.
 - **b. Critical Thinking** What characteristics do 16 and $81n^4$ share that make this possible?
 - c. Open-Ended Write a binomial that can be factored twice as the difference of squares.

