ice by Example

Simplify each product.

Example 1 (page 462)

1.
$$8m(m + 6)$$

2.
$$(x + 10)3x$$
 3. $9k(7k + 4)$

3.
$$9k(7k + 4)$$

4.
$$-5a(a-1)$$

5.
$$2x^2(9 + x)$$

5.
$$2x^2(9+x)$$
 6. $-p^2(p-11)$

7.
$$2x(6x^3 - x^2 + 5x)$$
 8. $4y^2(9y^3 + 8y^2 - 11)$ 9. $-5c^3(9c^2 - 8c - 5)$

8.
$$4y^2(9y^3 + 8y^2 - 11)$$

9.
$$-5c^3(9c^2 - 8c - 5)$$

10.
$$-7q^2(6q^5 - 2q - 7)$$

11.
$$-3g^7(g^4 - 6g^2 + 5)$$

10.
$$-7q^2(6q^5 - 2q - 7)$$
 11. $-3g^7(g^4 - 6g^2 + 5)$ **12.** $-4x^6(10x^3 + 3x^2 - 7)$

Example 2 (page 463)

Find the GCF of the terms of each polynomial.

13.
$$15w + 21$$

14.
$$6a^2 - 8a$$

15.
$$36v + 24$$

16.
$$x^3 + 7x^2 - 5x$$

17.
$$5b^3 + 15b - 30$$

16.
$$x^3 + 7x^2 - 5x$$
 17. $5b^3 + 15b - 30$ **18.** $9x^3 - 6x^2 + 12x$

Example 3 (page 463)

Factor each polynomial.

20.
$$v^2 + 4v$$

21.
$$10x^3 - 25x^2 + 20$$

19.
$$6x - 4$$

22. $2t^2 - 10t^4$

23.
$$15n^3 - 3n^2 + 12n$$

24.
$$6p^6 + 24p^5 + 18p^3$$

Apply Your Skills

- 25. Error Analysis Kevin said that $-2x(4x 3) = -8x^2 6x$. Karla said that $-2x(4x-3) = -8x^2 + 6x.$ Who is correct? Explain.
- 26. Open-Ended Write a polynomial that has a common factor in each term. Factor your polynomial.

Simplify. Write in standard form.

27.
$$-3a(4a^2 - 5a + 9)$$

28.
$$-7p^2(-2p^3+5p)$$

29.
$$12c(-5c^2 + 3c - 4)$$

30.
$$y(y + 3) - 5y(y - 2)$$

Simplify. Write in standard form:
27.
$$-3a(4a^2 - 5a + 9)$$
 28. $-7p^2(-2p^3 + 5p)$ 29. $12c(-5c^2 + 3c - 4)$
30. $y(y + 3) - 5y(y - 2)$ 31. $x^2(x + 1) - x(x^2 - 1)$ 32. $4t(3t^2 - 4t) - t(7t)$

32.
$$4t(3t^2-4t)-t(7t)$$

- 33. Building Models Suppose you are building a model of the square castle shown at the left. The moat of the model castle is made of blue paper.
 - a. Find the area of the moat using the diagram with the photo.
 - b. Write your answer in factored form.

Factor each polynomial.

34.
$$9m^{12} - 36m^7 + 81m^5$$
 35. $24x^3 - 96x^2 + 48x$ **36.** $16n^3 + 48n^2 - 80n$

35.
$$24x^3 - 96x^2 + 48$$

36.
$$16n^3 + 48n^2 - 80n$$

37.
$$5x^4 + 4x^3 + 3x^2$$

38.
$$13ab^3 + 39a^2b^4$$

34.
$$9m^{12} - 36m^7 + 81m^3$$
 35. $24x^4 - 96x^4 + 16x^2$ **37.** $5x^4 + 4x^3 + 3x^2$ **38.** $13ab^3 + 39a^2b^4$ **39.** $7g^2k^3 - 35g^5k^2$

40. Critical Thinking The GCF of two numbers p and q is 5. What is the GCF of p^2 and q^2 ? Explain your answer.

- **b. Writing** Suppose *n* is an integer. Is $n^2 n$ always, sometimes, or never even? Justify your answer.
- 42. A triangular number is a number you can represent with a triangular arrangement of objects. A triangular number can also be written as a product of two factors, as in the table.
 - a. Find the values of a, b, c, and d, and then write an expression in factored form for the *n*th triangular number.

	1	2	3	4
Triangular Number	1	3	6	10
rumber	÷ .	••		
Factored Form	$\frac{a}{2}(a+1)$	$\frac{b}{2}(b+1)$	$\frac{c}{2}(c+1)$	$\frac{d}{2}(d+1)$

b. Use the expression you wrote to find the 100th triangular number.

- Challenge 43. a. Geometry How many sides does the polygon have? How many of its diagonals come from one vertex?
 - **b.** Suppose a polygon has n sides. How many diagonals will it have from one vertex?
 - c. The number of diagonals from all the vertices is $\frac{n}{2}(n-3)$. Multiply the two factors.
 - d. For a polygon with 8 sides, what is the total number of diagonals that can be drawn from the vertices?

