EXERCISES Pactice and Problem Solving

O practice by Example (page 371)

Determine whether point P is a solution of the linear inequality.

1.
$$y \le -2x + 1$$
; $P(2,2)$

2.
$$x < 2$$
; $P(1,0)$

3.
$$y \ge 3x - 2$$
; $P(0,0)$

4.
$$y > x - 1$$
; $P(0, 1)$

5.
$$y \ge -\frac{2}{5}x + 4$$
; $P(0, 0)$

1.
$$y \le -2x + 1$$
; $P(2,2)$ 2. $x < 2$; $P(1,0)$ 3. $y \ge 3x - 2$; $P(0,0)$ 4. $y > x - 1$; $P(0,1)$ 5. $y \ge -\frac{2}{5}x + 4$; $P(0,0)$ 6. $y > \frac{5}{3}x - 4$; $P(0,1)$

Choose the linear inequality that describes each graph.

$$\mathbf{A.}\ y \geq -1$$

B. $y \le -1$

A.
$$y > \frac{1}{2}x$$

B.
$$y < \frac{1}{2}x$$

A.
$$y \ge -x + 2$$

$$\mathbf{B.} \ y \le -x + 2$$

A.
$$x > -2$$

B.
$$x < -2$$

Graph each linear inequality.

Graph each linear inequality.

11.
$$y \le \frac{1}{4}x - 1$$
12. $y \ge \frac{1}{4}x - 1$
13. $y < -4x - 1$
14. $y \ge 4x - 1$
15. $y < 5x - 5$
16. $y \le \frac{2}{5}x - 3$
17. $y \le -3x$
18. $y \ge -\frac{1}{2}x$

12.
$$y \ge \frac{1}{4}x - 1$$

13.
$$y < -4x -$$

14.
$$y \ge 4x - 1$$

15.
$$y < 5x - 5$$

16.
$$y \leq \frac{2}{5}x - 3$$

17.
$$y \le -3x$$

18.
$$y \ge -\frac{1}{2}x$$

Example 2 (page 371)

Write each linear inequality in slope-intercept form. Then graph the inequality.

19.
$$2x - 3y \ge 7$$

20.
$$5x - 3y \le 6$$

21.
$$4x - 6y \ge 16$$

21.
$$4x - 6y \ge 16$$
 22. $-4y - 6x > 8$

Example 3 (page 372)

Let x = the number of rolls of blue crepe paper.

Let y = the number of rolls of gold crepe paper.

- a. Write a linear inequality that describes the situation.
- b. Graph the linear inequality.
- c. Write three possible solutions to the problem.
- **d. Critical Thinking** The point (-2,5) is a solution of the inequality. Is it a solution of the problem? Explain.

24. Manufacturing A company makes nylon and canvas backpacks, as shown at the left. The profit on a nylon backpack is \$3 and the profit on a canvas backpack is \$10. How many backpacks must the company sell to make a profit of more than \$250?

- a. Write a linear inequality that describes the situation.
- b. Graph the linear inequality.
- c. Write three possible solutions to the problem.
- d. Critical Thinking Which values are reasonable for the domain and for the range? Explain.

Real-World (Connection

The American Academy of Orthopaedic Surgeons suggest that a backpack's weight should not be more than 20% of a student's body weight.

25.
$$y \leq \frac{2}{5}x + 2$$

25.
$$y \le \frac{2}{5}x + 2$$
 26. $y \ge -\frac{2}{5}x + 2$ **27.** $4x - 5y \le 10$ **29.** $4y < 6x + 2$ **30.** $2x + 3y \le 6$ **31.** $4x - 4y \le 8$

27.
$$4x - 5y \le 10$$

28.
$$4x + 5y \le 10$$

29.
$$4y < 6x + 2$$

30.
$$2x + 3y \le 6$$

31.
$$4x - 4y \le 8$$

32.
$$y - 2x < 2$$

33. Writing Explain how you can tell from a linear inequality whether you will shade above or below the graph of the boundary line.

Write the inequality shown in each graph.

34.

36.

🜎 37. Budget Suppose you work at a local radio station. You are in charge of a \$180 budget for new tapes and CDs. Record companies will give you 21 promotional (free) CDs. You can buy tapes for \$8 and CDs for \$12.

Let x = the number of CDs you buy.

Let y = the number of tapes you buy.

a. Write an inequality that shows the number of tapes and CDs you can buy

b. Graph the inequality.

- c. Is (8,9) a solution of the inequality? Explain what the solution means.
- d. If you buy only tapes and you buy as many as possible, how many new recordings will the station get?

Write the linear inequality described. Then graph the inequality.

38. x is positive.

39. y is negative.

40. y is not negative.

41. x is less than y.

42. Error Analysis Jan's graph of the inequality 4x + 6y > 12 is shown below. What is wrong with the graph?

- 43. Critical Thinking Write an inequality that describes the entire part of the coordinate plane *not* included in the solution of $y \ge x + 2$.
- 44. Probability Suppose you play a carnival game. You toss one blue and one red number cube. If the number on the blue cube is greater than the number on the red cube, you win a prize. The graph at the left shows all the possible outcomes of tossing the cubes.
 - a. Copy and shade the graph to show the winning outcomes.
 - b. Write an inequality that describes the shaded region.
 - c. What is the probability that you will win a prize?

Problem Solving Hint

For Exercise 45, draw a diagram of a possible garden.

- 45. Geometry You want to fence a rectangular area of your yard for a garden. You plan to use no more than 50 ft of fencing.
 - a. Write and graph a linear inequality that describes this situation.
 - **b.** Open-Ended What are two possible sizes for a square garden?
 - c. Can you make the garden 12 ft by 15 ft? Justify your answer.

For Exercises 46-47, write the inequality that has the solution described.

- **46.** The points (0, -3) and (8, 5) lie on the boundary line, but neither point is a solution. The point (1, 1) is not a solution.
- 47. The points (7, 12) and (-3, -8) lie on the boundary line, and each point is a solution. The point (1, 1) is also a solution.
- **48. a. Open-Ended** Write and graph an inequality in the form Ax + By > C, where A, B, and C are all positive.
 - **b.** Write and graph an inequality in the form Ax + By < C, where A, B, and C are all positive.
 - c. Reasoning Both inequalities are in standard form. Make a conjecture about the inequality symbol and the region shaded.
 - **d.** Would your conjecture in part (c) be different if B were negative?
- **49.** a. Is the point (4,5) a solution of the inequality y > x 1?
 - **b.** Is the point (4,5) a solution of the inequality y < 3x?
 - c. Find one other point that is a solution of both inequalities.
 - d. Draw a graph that shows all the points that are solutions of both inequalities.