ctice by Example

Use the figure at the right for Exercises 1-4.

Example 1 (page 250)

- 1. From the information given in the figure, how is \overline{AC} related to \overline{BD} ?
- **2.** Find *AB*.
- **3.** Find *BC*.
- **4.** Find *ED*.
- **5.** On a piece of paper, mark a point *H* for home and a point *S* for school. Describe the set of points equidistant from *H* and *S*

Example 2 (page 251)

7. Algebra Find y, ST, and TU.

Use the figure at the right for Exercises 8-11.

- 8. From the information given in the figure, how is \overrightarrow{HL} related to $\angle JHG$? Explain.
- **9.** Find the value of y, then find $m \angle FHL$ and $m \angle KHL$.
- **10.** Find *EF*.
- 11. What can you conclude about point E?

- B Apply Your Skills x^2 Algebra Use the figure, below right, for Exercises 12–16.
 - **12.** Find the value of x.
 - 13. Find TW.

 - **15.** What kind of triangle is $\triangle TWZ$? Explain.
 - **16.** If R is on the perpendicular bisector of \overline{TZ} , then R is ? from T and Z, or ? = ?.
 - 17. Write Theorems 5-2 and 5-3 as a single biconditional statement.

 \overrightarrow{CD} is the perpendicular bisector of both \overrightarrow{XY} and \overrightarrow{ST} , and CY = 16. Find each length.

- 18. CT
- 19. TY
- 20. SX
- 21. CX
- 22. MT
- 23. ST
- 24. DY
- 25. XY
- **26.** What kind of triangles are $\triangle SCT$ and $\triangle XCY$? Explain.
- 27. Error Analysis To prove that $\triangle PQR$ is isosceles, a student began by stating that since Q is on the segment perpendicular to \overline{PR} , Q is equidistant from the endpoints of \overline{PR} . What additional information does the student need in order to make that statement?

W

3x - 5

 $\stackrel{\textstyle extstyle }{\textstyle extstyle }$ Writing Determine whether point A must be on the bisector of $\angle TXR$. Explain.

28.

30.

Real-World (Connection

On a baseball field, second base is equidistant from the foul lines and 127 feet from home plate.

- 31. Baseball What is the common name for the part of a baseball field that is equidistant from the foul lines and 60 ft 6 in. from home plate?
 - 32. a. Constructions Draw a large triangle, $\triangle CDE$. Construct the angle bisectors of each angle.
 - b. Make a Conjecture What appears to be true about the angle bisectors?
 - c. Test your conjecture with another triangle.

Need Help?

In Exercise 33a, your construction may suggest something but be slightly off. If so, test your conjecture very carefully in part (c).

Real-World (Connection

Challenge

The picture hangs straight when the hook is on the perpendicular bisector of the picture's top edge.

- 33. a. Constructions Draw a large acute scalene triangle, $\triangle PQR$. Construct the
 - b. Make a Conjecture What appears to be true about the perpendicular
 - c. Test your conjecture with another triangle.

Coordinate Geometry Find two points on the perpendicular bisector of \overline{AB} . Verify your results by showing each point is equidistant from A and B.

34.
$$A(0,0), B(0,4)$$

35.
$$A(0,2), B(6,2)$$

36.
$$A(3,3), B(3,-3)$$

37.
$$A(3,0)$$
, $B(0,3)$

- **40. Coordinate Geometry** You are given points A(6, 8), O(0, 0), and B(10, 0).
 - **a.** Write equations of lines ℓ and m such that $\ell \perp \overrightarrow{OA}$ at A and $m \perp \overrightarrow{OB}$ at B. **b.** Find the intersection C of lines ℓ and m.
 - **c.** Show that CA = CB.
 - **d.** Explain why C is on the bisector of $\angle AOB$.

Proof 41. Developing Proof Complete this paragraph proof of the Perpendicular

Given:
$$\overrightarrow{CD} \perp \overrightarrow{AB}, \overrightarrow{CD}$$
 bisects \overrightarrow{AB} .

Prove:
$$DA = DB$$

Proof:
$$\overline{AC} \cong \overline{BC}$$
 by definition of $\underline{?}$.

$$\overrightarrow{CD} \perp \overrightarrow{AB}$$
, so $\angle DCA$ and $\angle DCB$ are ? angles.

Therefore,
$$\angle DCA \cong \angle DCB$$
.

$$\overline{DC} \cong \overline{DC}$$
 by the ? Property of Congruence.

Therefore,
$$\triangle CDA \cong \triangle CDB$$
 by $\underline{?}$. $\overline{DA} \cong \overline{DB}$ because $\underline{?}$, so $DA = DB$.

Given:
$$AP = AQ$$
 with $\overline{AB} \perp \overline{PQ}$ at B .

Prove:
$$\overline{AB}$$
 is the perpendicular bisector of $?$.

Proof:
$$\triangle ABP$$
 and $\triangle ABQ$ are right triangles with a common leg and congruent hypotenuses.

Thus
$$\triangle BAP \cong \underline{?}$$
 by the HL Theorem. $\overline{PB} \cong \overline{BQ}$ using $\underline{?}$, so \overline{AB} bisects \overline{PQ} by the definition of $\underline{?}$. Hence, \overline{AB} is the perpendicular bisector of \overline{PQ} .

Coordinate Geometry Write an equation of the perpendicular bisector of \overline{AB} .

44.
$$A(0,0), B(6,0)$$

45.
$$A(1,-1), B(3,1)$$

46.
$$A(-2,0)$$
, $B(2,8)$

47. Reasoning Sketch a line equidistant from three noncollinear points. Explain your procedure.

Proof 48. Write a paragraph proof of the Angle Bisector Theorem.

Given:
$$\overrightarrow{PB} \perp \overrightarrow{AB}, \overrightarrow{PC} \perp \overrightarrow{AC},$$

 \overrightarrow{AP} bisects $\angle BAC$.

Prove:
$$PB = PC$$

