blem Solving

Name an angle or angles in the diagram described by each of the following,

- supplementary to ∠AOD 2. adjacent and congruent to LAOE 97)
 - supplementary to ∠EOA
 - complementary to ∠EOD

In the diagram above, find the measure of each of the following angles, 9. LAOB

- 7. ∠DOC
- Can you make each conclusion from the information in the diagram? Explain,
- e 2 97) 10. $\angle J = \angle D$
 - 11. ZJAC = ZDAC
 - ∠IAE and ∠EAF are adjacent and supplementary.
 - 13. $m \angle JCA = m \angle DCA$
 - $14. \ m \angle JCA + m \angle ACD = 180$
 - 15. $\overline{AJ} \simeq \overline{AD}$

- C is the midpoint of JD.
- ∠EAF and ∠JAD are vertical angles. 18. AC bisects ∠JAD.
- 19. Developing Proof Complete this proof of one form of Theorem 2-3 by filling in the blanks.

If two angles are complements of the same angle, then the two angles are congruent.

Given: ∠1 and ∠2 are complementary. ∠3 and ∠2 are complementary.

Prove: ∠1 = ∠3

Proof: By the definition of complementary angles, $m\angle 1 + m\angle 2 = \mathbf{a}$. $\underline{?}$ and $m\angle 3 + m\angle 2 = \mathbf{b}$. $\underline{?}$

Then $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$ by \mathbf{c} .

Subtract $m \angle 2$ from each side. You get $m \angle 1 = \mathbf{d} \cdot 2$.

[2] Algebra Find the value of each variable.

20.

g and Proof

- Find the measures of the labeled angles in each exercise.
- 24. Exercise 21
- 25. Exercise 22

- 26. Writing How is a theorem different from a postulate?
 - 27. Open-Ended Give an example of vertical angles in your home.
- 28. Reasoning Explain why this statement is true: If $m \angle 1 + m \angle 2 = 180$ and $m \angle 3 + m \angle 2 = 180$, then $\angle 1 \cong \angle 3$.
- Algebra Find the value of each variable and the measure of each labeled angle.

29.
$$(x+10)^{\circ}$$
 $(4x-35)^{\circ}$

31. Developing Proof Complete this proof of Theorem 2-4 by filling in the blanks.

All right angles are congruent.

Given: $\angle X$ and $\angle Y$ are right angles.

Prove: $\angle X \cong \angle Y$

Proof: By the definition of a. ?, $m \angle X = 90$ and $m \angle Y = 90$. By the Substitution Property, $m \angle X = \mathbf{b}$. ? or $\angle X \cong \angle Y$.

Name two pairs of congruent angles in each figure. Justify your answers.

35. Developing Proof Complete this proof of Theorem 2-5 by filling in the blanks.

If two angles are congruent and supplementary, then each is a right angle.

Given: $\angle W$ and $\angle V$ are congruent

and supplementary.

Prove: $\angle W$ and $\angle V$ are right angles.

Proof: $\angle W$ and $\angle V$ are congruent, so $m \angle W = m \angle a$. ? $\angle W$ and $\angle V$ are supplementary so $m \angle W + m \angle V = \mathbf{b}$.

Substituting $m \angle W$ for $m \angle V$, you get $m \angle W + m \angle W = 180$, or $2m \angle W = 180$. By the c. ? Property of Equality, $m \angle W = 90$.

Since $\angle W \cong \angle V, m \angle V = 90$, too. Then both angles are d. ? angles.

- 36. Design The two back legs of the director's chair pictured at the left meet in a 72° angle. Find the measure of each angle formed by the two back legs.
- Coordinate Geometry ∠AOX contains points A(1, 3), O(0, 0), and X(4, 0).
 - a. Find the coordinates of a point B so that $\angle BOA$ and $\angle AOX$ are adjacent complementary angles.
 - b. Find the coordinates of a point C so that \overrightarrow{OC} is a side of a different angle that is adjacent and complementary to ∠AOX.
- Coordinate Geometry ∠DOE contains points D(2,3), O(0,0), and E(5,1). Find the coordinates of a point F so that \overrightarrow{OF} is a side of an angle that is adjacent and supplementary to ∠DOE.

Exercise 36

Exercise 43

Algebra Find the value of each variable and the mea $(12x-15)^{\circ}/(3x+45)^{\circ}$

43. Sports In the photograph, the wheels of the racing wheelchair are tilted so **Sports** In the photograph, the wheels of the function of the statement $\angle 3 \cong \angle 4$? that $\angle 1 \cong \angle 2$. What theorem can you use to justify the statement $\angle 3 \cong \angle 4$?

Critical Thinking If possible, find the measures of the angles described. If it is

not possible, explain why. 44, congruent adjacent supplementary angles

- 45. congruent adjacent complementary angles
- 46. congruent vertical angles

Algebra Find the measure of each angle.

- 47. $\angle A$ and $\angle B$ are complementary. $m\angle A=3x+12$ and $m\angle B=2x-22$.
- 48. $\angle A$ and $\angle B$ are supplementary. $m\angle A=3x+12$ and $m\angle B=2x-22$.
- ∠A is twice as large as its complement, ∠B.
- 50. $\angle A$ is half as large as its complement, $\angle B$.
- ∠A is twice as large as its supplement, ∠B.
- 52. $\angle A$ is half as large as twice its supplement, $\angle B$.
- 53. The measure of $\angle B$, the supplement of $\angle A$, is four times the measure of $\angle C$, the complement of $\angle A$.
- 54. The measure of $\angle B$, the complement of $\angle A$, is one-sixth the measure of $\angle C$. the supplement of $\angle A$.

Challenge Free 55. Write a paragraph proof for this form of Theorem 2-2.

If two angles are supplements of congruent angles, then the two angles are congruent.

Given: ∠1 and ∠2 are supplementary. ∠3 and ∠4 are supplementary. 42 ≈ 44

Prove: ∠1 ≈ ∠3

fruit 56. Write a paragraph proof for this form of Theorem 2-3.

If two angles are complements of congruent angles, then the two angles are congruent.

Given: ∠1 and ∠2 are complementary. ∠3 and ∠4 are complementary.

Prove: ∠1 ≈ ∠3

